skip to main content


Search for: All records

Creators/Authors contains: "Takeuchi, Tomomi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the green alga Chlamydomonas reinhardtii, regulation of the cell cycle in response to external cues is critical for survival in a changing environment. The loss of the nuclear COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS 7 (CHT7) protein affects the expression of many genes especially in response to nitrogen availability. Cells lacking CHT7 exhibit abnormal cell morphology following nitrogen deprivation and fail to resume normal cell division after N resupply. To investigate the function of CHT7 in the regulation of cell cycle-related pathways, cells were synchronized, and RNA-seq analysis was performed during various stages of the cell cycle. In the cht7 mutant following nitrogen deprivation, the cells were not dividing, but a subset of cell cycle genes involved in DNA replication and mitosis were found to be derepressed, suggesting that the CHT7 protein plays a role in cell cycle regulation that is opposite to that of the mitotic cyclin-dependent kinases. Furthermore, genes for cell wall synthesis and remodeling were found to be abnormally induced in nondividing cht7 cells; this misregulation may deplete cellular resources and thus contribute to cell death following nitrogen deprivation. Lastly, 43 minimally characterized kinases were found to be highly misregulated in cht7. Further analysis suggested that some of these CHT7-regulated kinases may be related to the MAP3K and Aurora-like kinases, while others are unique. Together, these results suggest a role of CHT7 in transcriptional regulation of the cell cycle and reveal several pathways and genes whose expression appears to be subject to a CHT7-mediated regulatory network.

     
    more » « less
  2. Summary

    In plant lipid metabolism, the synthesis of many intermediates or end products often appears overdetermined with multiple synthesis pathways acting in parallel. Lipid metabolism is also dynamic with interorganelle transport, turnover, and remodeling of lipids. To explore this complexityin vivo, we developed anin vivolipid ‘tag and track’ method. Essentially, we probed the lipid metabolism inArabidopsis thalianaby expressing a coding sequence for a fatty acid desaturase fromPhyscomitrella patens(Δ6D). This enzyme places a double bond after the 6th carbon from the carboxyl end of an acyl group attached to phosphatidylcholine at itssn‐2 glyceryl position providing a subtle, but easily trackable modification of the glycerolipid. Phosphatidylcholine is a central intermediate in plant lipid metabolism as it is modified and converted to precursors for other lipids throughout the plant cell. Taking advantage of the exclusive location of Δ6D in the endoplasmic reticulum (ER) and its known substrate specificity for one of the two acyl groups on phosphatidylcholine, we were able to ‘tag and track’ the distribution of lipids within multiple compartments and their remodeling in transgenic lines of different genetic backgrounds. Key findings were the presence ofER‐derived precursors in plastid phosphatidylglycerol and prevalent acyl editing of thylakoid lipids derived from multiple pathways. We expect that this ‘tag and track’ method will serve as a tool to address several unresolved aspects of plant lipid metabolism, such as the nature and interaction of different subcellular glycerolipid pools during plant development or in response to adverse conditions.

     
    more » « less